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Abstract 

It is shown that if an upper bound to the false vacuum energy of the 
electroweak Higgs potential is satisfied, the true ground state of high- 
density matter is not nuclear matter, or even strange-quark matter, but 
rather a non-topological soliton where the electroweak symmetry is exact 
and the fermions are massless. We examine this possibility in the standard 
SU(3)c @ Sum @ U(l)y model. The bound to the false vacuum energy 
is satisfied only for a narrow range of the Higgs boson masses in the 
minimal electroweak model (within about 10 eV of its minimum allowed 
value of 6.6 GeV), and a somewhat wider range for clectrowcak models 
with a non-minimal Higgs sector. 
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The idea that restoration of spontaneously broken symmetries occurs at high 

temperatures is now widely accepted [I], as is the idea that high density also can 

restore symmetry [2]. In this paper we consider the possibility that high baryon 

density can restore the electroweah symmetry and the true ground state of high- 

density baryonic matter may be such a configuration. We will assume the vacuum 

expectation value of a scalar field is zero in some region of high density, but non-zero 

in a region of low density. Such a configuration will take the form of a non-topological 

soliton. 

There has recently been a great deal of interest in nontoplogical so&ions (here- 

after, NTSs) [3]. We will consider NTSs that are a localized region of space con- 

taining some number of particles confined to a region of false vacuum. The particles 

are trapped in the false vacuum region because they have a smaller mass in the false 

vacuum than in the true vacuum. For a number N of particles greater than some 

critical value, soliton solutions where some scalar field 4 is at a local ma&mum of 

the classical potential will have a lower energy than N free massive particles with 

4 equal to the global minimum of the classical potential. Friedberg, Lee, and Sir- 

lin [4] demonstrated that such spherical non-topological scalar field soliton solutions 

in 3 spatial dimensions existed, and for a large enough N were in fact stable, both 

classically and quantum mechanically, to arbitrary small perturbations in the fields. 

The necessary conditions for having such solutions are: (1) the conservation of an 

additive quantum number (in our case baryon number) carried by some complex field 

+ (in our discussion a fdon field), (2) the presence of a rcalsl field 4 (here, the 

electrowealt Higgs) that acquires a non-zero vacuum expectation value in the classical 

ground state, and (3) the mass of the + field depends upon the vacuum expectation 

value of 4. 
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Here we address whether such objects exist in the standard theory of the strong 

and electroweak interactions. Our conclusion is that NTSs may indeed exist in the 

standard electroweak model. Our analysis compliments and extends the work of 

Khlebnikov and Shaposhnikov [5]. In their case chiral symmetry was broken in the 

non-topological soliton, resulting in the presence of nuclear matter in the soliton, 

whereas in our case chiral symmetry remains unbroken and as we shall see we have 

quark matter present. 

Globally-conserved charges in the standard model are baryon number B and lepton 

number L.’ Quarks will be massless in the region 4 = 0 and massive in the true 

vacuum, hence baryon number is a possibility. Neutrinos carry lepton number, but 

since they are massless in the standard model (d o not couple to the Higgs) there is 

no mass difference between the false and true vacuum and they will not be trapped. 

The lepton number of the NTS will be zero. A neutrino star is in principle possible 

if one includes gravitational interactions, but hard to form because neutrino cooling 

is very slow in the standard model [6]. Th us, we are led to baryon number as the 

conserved global charge to satisfy (1). In the minimals electroweak model the neutral 

component of the W(2), Higgs doublet receives a vacuum expectation value, satisfing 

(2). Because quarks are massless in the NTS, but massive outside of it, (3) is satisfied. 

Although the standard model hap the necessary ingredients for the existence of 

NTS solutions, we must determine if the NTS has an energy per baryon less than 

that of the lowest energy free-particle solution. 

For a given baryon number there are known to be two possible phases for quarks. 

‘Even though weak in&don, vioktc B and L qarately, COMr,‘i,U3 ody B - L, instanton 
effects are extremely ww,ll and will be neglected here. 

*We differentiate between “standard” and ‘minimal”. Minimd refers to the Higgs structure, 
while standard refers to the symmetry. Non-minimd elatroaeak mod& contain more than 6 single 
Higga doublet. Non-standard dectroweak models might include right-handed W’s, etc. 
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One is the confined, or hadtonic, phase where the quarks are bound into nucleons and 

the minimum energy per unit baryon number is that of bulk nuclear matter. Another 

mode is the uncontined, or quark-gluon, phase where quarks are free. Ordinary 

nuclei do not convert to the quark-gluon phase because in the unconfined phase 

there is a background energy density, which can be thought of as a “bag energy”. 

The bag energy is determined by the bag constant BO [7]; the currently popular 

value is Bo = (145 MeV)‘. The background energy density increases the energy per 

unit baryon of the quark&on plasma above the proton mass. There have been 

investigations [s] into the possibility that the u, d, n quark&on plasma, so-called 

strange-quark matter, has an energy per baryon lower than nuclear matter due to a 

lower Fermi energy. (For a given baryon number density, the Fermi energy decreases 

as the number of fermion species which carry baryon number is increased.) Also, 

it is known that there is negative pressure, -B,J, in the quark&on plazma. Thus, 

the bag constant plays the role of false vacuum energy density in scalar field theory. 

Additionally, the fermion number density in hand is not much different from that of 

proton and so it is assumed that the bag constant does not change. 

Now we discuss how the above might be modified if there is a large domain where 

the Higgs field is equal to zero. Quarks, leptons, and the electroweak gauge bosom 

are massless in this region. Suppose that there is non zero baryon number density and 

the domain is large enough to neglect surface effects. What is the ground state energy 

at zero temperature in this phase? Is this phase stable against small fluactuations 

in the expectation value of d? Is the energy per baryon less than nuclear matter 

density? 

First, consider the particle content of the minimal SU(2), @ U(l)y model in the 

unbroken phase. There are four massless vector bosona: bi (i = 1,2,3) of SU(2),, 
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and y,, of U(l)v. In the broken phase, the photon field A,, and the transverse com- 

ponents of go are linear combinations of b: and yr: A,, = g,, cos BW + bf, sinew, 

2: = -y,,sin& + b3,cosB~. The transverse components of the W* come from b: 

and b;: fiW2 = b; $ ib’f,. 

In the minimal model there is one complex Higgs doublet, Qr = (4+ 4”). If the 

vacuum expectation of the Higgs field is zero, the symmetry is restored and the Higgs 

field has a negative ‘bare’ mass squared. However, iinite fermion and vector boson 

density contributes a positive mass squared for the scalar field [2]. As we will argue 

later, the effective mass of the scalar field will be positive and the zero expectation 

value of the scalar field will be locally stable, resulting in symmetry restoration. 

Assume for now that there is only one generation of fermions. The fermions are 

massless in the unbroken phase:. The left-handed leptons are in an SU(2)z doublet, 

Lr E (v. e)n, and the right-handed electron is an SU(2), singlet. The left handed 

quarks are also in a doublet, QT z (u d)n, and the right-handed quarks are in SU(2), 

singlets. 

The hypercharge of all particles are determined by the Gell-Mann-Nishijima re- 

lationship between the charge, hypercharge, and third component of isospin, Q = 

Ts + Y/2. 

Any particle that is massless outside the NTS will not be trapped inside the NTS, 

and hence will have vanishing number density and chemical potential. The neutrino is 

an example: a(ur,) = 0. Since t$ and Y,, are components of the massless photon field, 

they will be able to escape the soliton and they will have zero number density and 

chemical potential. Since b$ projects only onto massive W*‘s which decay to massive 

particles, they will be trapped inside the NTS. Even though the SU(2), nonabelian 

symmetry is restored, this gauge theory is not asymptotically free and there is no 

4 



confinement. Hence they are massless inside the NTS, and their chemical potentials 

are zero, p(b:) = 0. 

Chemical equilibrium will establish relations between the chemical potentials of 

the particles present. Let us first consider chemical equilibrium between the left 

handed fermions and vector bosons. us is connected to dz and eL is connected to VL 

by b:. Since the mazsless vector bosons must have zero chemical potential, 

/J(W) = 44,) +/&I = cc(b) 

a(e) = Aa) + p(b:) = Aa) 0) 

Since neutrinos escape and have zero chemical potential, .n(eL) = 0. Right-handed 

fermions do not couple to b: and hence there is no relationship between their chemical 

potentials and the chemical potential of bt. 

Self interactions between vector bosom do not lead to any constraint in chemical 

potentials other than p(b:) = 0. Self interaction between Higgs particles does not 

lead to any constraint. For a complex scalar field 4 = (l/&)f exp(iwt), the number 

density n = fsw of Higgs field is zero when the expectation value f of the field is 

zero because the energy density is n*/2f’. As it will be shown, the effective chemical 

potential for Higgs field is positive and large. Hence the dynamical effect of the Higgs 

boson is that of an off mass-shell particle mediating interactions. 

Now consider the conditions for chemical equilibrium arising from the exchange 

of Higgs particles. Conservation of TS and Y, leads to two further contributions to 

(1): 

P(UL) = 14~4 +~(a) (2) 

4~~1 = d&I-,Cc(ed. (3) 

Thus we have the conditions for chemical equilibrium as eqs. (1 - 3) between the 
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chemical potentials. The additional constraints are p(b:) = p(m) = p(eL) = 0. 

The baryon number density is defined as a sum over the net number densities of 

all quarks q: nz E c,n(q)/3. The lepton number density is defined in a similar 

manner by summr ‘ng over all leptons 1: no z Elm(f). Here, the net number density 

of particles means the number densty of particles minus that of antiparticles. Using 

the relations between chemical potentials and the definition of the number density in 

terms of the chemical potentials, nz and nn are given by 

no = ; [I + n(h) + n(m) + m(h)] (4) 

= 5[2~(u~)+n(aR)+n(dR)] 

nL = n(eL)+n(eR)+n(vL) 

= n(eR). (5) 

We require the.NTS to be “charge neutral”. For our problem this requires the 

charge density of SU(2), and U(l)y to vanish. For SU(2), the necessary condition 

is that the density of the T3 generator should be zero. Then, one expects the system 

to adjust to have the density of ? zero. For U(l)y, charge neutrality implies Y = 0. 

The T3 and Y densities are 

Ts = ; [n(++) - n(#)] + n(b+ + ; [n(u) - n(dL)] 

+:[~(VL)-n(eL)] = 0 

y = ; [I + n(dL)] + +‘,3) - ;R(dR) - 2n(eR) 

- b(4 + 441 + [44+) + 4@0)] 
= $‘L) + $+‘ft) - ;n(dR) - 2n(eR) = 0. (6) 

From Ts = 0 and n(#) = 0 and the relations in eqs. (l-3) for chemical energy, we 

find that n(b+) = 0. 
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The above considerations can be easily extended to the case with arbitrary number 

of generations, say a. Generations will be mixed by the Yukawa interactions, and the 

composition of fermions will be independent of generation, as they are all massless 

inside the domain. Thus ‘LB = (1/3)~[2n(un) + n(uR) + n(dR)]. Other generations 

will have identical compositions. 

The fermionic energy density, & of a relativistic fermion is 

for g degrees of freedom. The number density is given by ti = g$/6aa. Now each 

quark of one handedness we have g = 3~ degrees of freedom where the factor of three 

represents the color, and a the number of families. We now must evaluate the energy 

density of the system. We can rewrite eqns. (1 -3, 4, 6) in terms of their chemical 

potentials as: 

/&(UL)= P(UR)+/J(eR) (8) 

+L)= P(dR) -deR) (9) 

$(uL) + 2$(uR) - p’(dR) - $(en) = 0 (from Y = 0) (10) 

WI = &(~P"("L) +$(uR)+$(dR)) 01) 

Defining I E= p(en)/p(uL), a s p(uR)/p(UL), y s p(dR)/p(uL), we find the solu- 

tion to eqs. (8 - 10): t = 0.235, 2 = 0.765, and go = 1.235. This can be substitued 

into eq. (11) to give the number densitier of the particles in terms of the fixed ran in 

chemical equilibrium: 

I = 2.39&~-‘~~ 

li((dR) = 2.95n;3ic-1/3 
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,u(uR) = 1.83n~s~-“s 

p(eR) = 0.56n~rs-‘/s. 02) 

The energy density is a sum of the energy densities of the fermions present, the bag 

energy density B,, and the false vacuum energy density of the Higgs field Vi,. 

E= C &i+Bo+V,= C d + (B. + Vo). 
i=fdow i=fermblu ET+ 

(13) 

Equilibrium occurs when the positive Fermi pressure of fermions is equal to the 

negative pressure of the vacuum energy. This happens when the energy per unit 

baryon number is at local minimum, i.e., S(&/nn) = 0. Minimization of the energy per 

baryonresults in the relationship Ci&‘i = 3(Bo+Vo) or (B,+V,) = 1.93n~n-1/3.Thus 

we can rewrite the minimum energy per baryon in terms of (B, + Vo): 

&IN = 4(Bo + K,) (14) 

&IN/~B = 6.551+‘( B. + IQ’/‘. (15) 

For the case of the true vacuum state, V, = 0, we expect the energy of the gluon- 

plasma to be larger than the energy per unit baryon of bulk nuclear matter which is 

about 930 Mev per nucleon, i.e. for the case a = 1, B. > (n~,,,.~~/6.55)‘, which is 

the case here. However for the NTS to be absolutely stable, the energy per baryon 

should be less than the energy per baryon of bulk nuclear matter. From eq. (15), 

this requirement places an upper bound on the total vacuum energy density, Bo + Vo, 

which in turn places an upper bound on the vacuum energy density of the Higgs 

potential, for )c = 3, ( n = 1 does not work ) 

V, < (170MeV)‘. 06) 
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The question now is whether this bound is acceptable in the standard model. In 

the standard model with three generations, there are two important parameters, the 

mass of the Higgs particle and the mass of the top quark. There are theoretical and 

experimental bounds on these masses, which in turn leads to bounds on V,. 

Before we go on, let us ask whether the zero expectation value of Higgs field 

is locally stable. Suppose that the vacuum expectation value (#‘, @) is (f, 0). 

Then, the symmetry is broken spontanously into U(l)*. One con find the chemical 

equilibrium of fermions and vector bosons for a given baryonic density in a unitary 

gauge. The effective mass term for the Higge field arises because of a finite fermion 

and vector boson density. The large contribution in our case comes from top quarks 

and W- bosons [2]. The effective potential is 

Kff(f) = ; [++]“” n;“M;$ +nw- ; luw- 
0 

where &~T,&L are masses at the true vacuum C$ = V. As nw- is not zero in the 

4 = 0 limit, the potential forces 4 to be zero. But this limit is singular in the sense 

that the symmetry is changing discontinously and so is the chemical composition. 

In the standard model the Higgs field is in the SU(2) spinor representation. We 

write the potential for the one real component which describes the physical Higgs 

particle. Including one-loop corrections, the potential is [Q] 

v(d) = (2A - C)u’# - A,#? + Cd’h 
0 

$ 

where C is given in terms of the masses of the Z”, W*, Higgs, and top quark as 

c= &(3M; + SM$ + MA - 12M;) 

= 1.79 x lo-’ + ( 12t;eV)4 - (66zeV)4. 09) 



We have neglected the contributions of other quarks because their masses are much 

less than W and Z, and we have used sin’ Bw = 0.226. 

The potential has a local minimum at 4 = v. In the standard model v = 246 

GeV via the relation GF = l/&u’. There are two conditions that must be placed 

upon the parameters in the potential:’ (i) The false vacuum energy density at 4 = 0 

relative to the true vacuum energy density at d = v is Vo c V(0) -V(v) = (C - A)v’. 

For 4 = v to be the true vacuum, V, should be larger than zero, or C 1 A [ll]. (ii, 

For the potential to be stable at large 4, C should be larger than zero, or equal to zero 

with A < 0. These two conditions place constraints on the Higgs mass, M& = (12C - 

8A)G. From condition (i), the Higgs mass must satisfy the inequality M& > 4Cva. 

From condition (ii), MA 2 (1232 GeV)’ [(A&/662 GeV)’ - 1.79 x lo-‘]. The picture 

of these conditions on the parameter space of Higgs and top quark masses are given 

in fig. 1. 

Fromeq. (16), theNTS willbestableif Vo = (C-A)v’ = (ua/8)[Mi-M&(MIN)] 5 

(170 MeV)‘. Since v > 170 MeV, A must be very close to C in order for the NTS 

to be stable. This means that ME must be very close to its minimum allowed value. 

Explicit calculation shows that for small top quark masses, the NTS will be stable 

if the Higgs mazs is between its minimum value (6.6 GeV), and about 10 eV above 

this minimum value. This restriction waz first realized in [5]. They also pointed 

out that the degeneracy of minima with $I = (0, w) naturally emerges in a number 

of supergravity-induced extensions of the electroweak theory [12]. As the top quark 

mass increases, C decreases, and the width of the allowed range of Higgs mass in- 

aTherc ia an additiond cosmologicd bound resulting from the requirement that the truition 
not be strongly flnt order. This requires that there ia no barrier between the true and f&e vacu.s, 
or d’V/d@ < 0 at 4 = 0 [lo]. This will be satisfied if 2A < C. We will not satisfy this constraint. 
The n~barrier condition need not be applied if a large neutrino degeneracy prevents symmetry 
restoration at high dendty. 
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creases. The allowed region of AM E Ma - Mz(MIN) for NTS stability is shown in 

fig. 1. 

The present experimental lower bound on the top quark mass is about 40 Gev. 

The experimental bound on the Higgs mass is more complicated. The bound on 

very low mass Higgs is rather weak. The energy shift in p-mesonic atoms due to the 

additional potential energy from Higgs exchange can be measured in X-ray spectra, 

and leads to a bound Ma > 8 MeV [13]. High-precision, neutron-nuclei scattering 

experiments leads to a bound Ma > 13 Mev [14]. Decays x+ + e+uE, K+ + r+E, 

and 7’ --t qE can exclude the mass range 0 - 400 MeV [15]. Recent analysis of the 

Y + 74 decay excludes masses in the range 0.5 - 3.0 GeV [16]. The only region not 

covered is a small msss interval around the kaon mass. However, one should keep 

in mind that the lower bound on the Higgs mass is not completely definite. (For a 

detailed discussion, see [17].) 

One can ask what happens when there are two Higgs fields. Then the lowest mass 

Higgs field corresponds to an angle variable between the vacuum expectation values 

of the two fields. When one of the Higgs fields is zero, up quark, down quark, or parts 

of whole generations become massless. Then, we get a similar upper bound on the 

Higgs psrtide mazs. The parameter space is much larger and so is the possibility. 

The NTS configuration may be interesting even if it has higher energy per baryon 

than nuclear matter. The point is that the NTS may be a met&able configuration; 

there may be an energy barrier between the NTS minimum and the nuclear matter 

minimum. Of course such a barrier may also exist in the caze where the NTS is the 

global minimum energy per baryon, suppressing the transition from nuclear matter 

to NTS. 

Finally, if there are such NTSs in the standard model, they may be interesting 
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astrophysically [5]. One might expect that neutron stars could be converted into 

NT%. 
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Figure Caption 

Fig. 1: The solid line is the minimum Higgs mass as a function of the top quark 

mass from the two conditions discussed in the text. If the Higgs mass is above this 

value, but below the value plus AM(MAX) (given by the dashed line) the NTS will 

be the true ground state of baryonlc matter. 
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